## Lesson 2. Vectors

#### 1 Today...

- Vectors in  $\mathbb{R}^2$  and  $\mathbb{R}^3$
- Standard basis vectors and unit vectors
- Problems with forces

### 2 What is a vector?

• A vector is an object that has both

• Notation: **a** or  $\vec{a}$ 

• A vector  $\vec{a}$  can be represented by an ordered list of numbers:

$$\vec{a} = \langle a_1, a_2 \rangle$$
 (in  $\mathbb{R}^2$ )  $\vec{a} = \langle a_1, a_2, a_3 \rangle$  (in  $\mathbb{R}^3$ )

and

- These numbers (e.g.  $a_1, a_2, a_3$ ) are known as **components** of  $\vec{a}$
- For now, let's stick to  $\mathbb{R}^2$

• Much of what we'll see generalizes to  $\mathbb{R}^3$ 

• Graphically:



- The **magnitude** or **length** of vector  $\vec{a} = \langle a_1, a_2 \rangle$  is
- Two vectors are **equivalent** if they have the same magnitude and direction position does not matter
- A special vector the **zero vector**  $\vec{0} = \langle 0, 0 \rangle$ 
  - $\circ \vec{0}$  is the only vector with no specific direction

**Example 1.** Consider the vectors below.

- a. Give  $\vec{a}$ ,  $\vec{b}$ ,  $\vec{c}$  as an ordered list of numbers.
- b. Find  $|\vec{c}|$ .
- c. Are any of these vectors equivalent? Which ones?



**Example 2.** Consider  $\vec{d}$  below. We are given that  $|\vec{d}| = 5$ . Give  $\vec{d}$  as an ordered list of numbers.



### 3 Scalar multiplication

- Let *c* be a scalar,  $\vec{a}$  be a vector  $\Rightarrow c\vec{a}$  is another vector
- $c\langle a_1, a_2 \rangle =$

**Example 3.** Consider  $\vec{a} = \langle 2, 1 \rangle$  from the previous example.



c. Draw  $\vec{a}$ ,  $3\vec{a}$  and  $-2\vec{a}$  below.



- If c > 0, then  $c\vec{a}$  is a vector in the same direction as  $\vec{a}$  and |c| times the length of  $\vec{a}$
- If c < 0, then  $c\vec{a}$  is a vector in the <u>opposite</u> direction as  $\vec{a}$  and |c| times the length of  $\vec{a}$
- If c = 0, then  $c\vec{a} = \vec{0}$

# 4 Adding and subtracting vectors

- Let  $\vec{a}, \vec{b}$  be vectors  $\Rightarrow \vec{a} + \vec{b}$  is another vector
- $\langle a_1, a_2 \rangle + \langle b_1, b_2 \rangle =$

**Example 4.** Consider  $\vec{a} = \langle 2, 1 \rangle$  and  $\vec{b} = \langle 1, 2 \rangle$  from the previous example.



b. Draw  $\vec{a} + \vec{b}$  below:





• Triangle law for adding vectors:









### 5 Generalizations

• All of the above generalizes naturally to  $\mathbb{R}^3$ :

$$\begin{aligned} |\langle a_1, a_2, a_3 \rangle| &= \sqrt{a_1^2 + a_2^2 + a_3^2} & \langle a_1, a_2, a_3 \rangle + \langle b_1, b_2, b_3 \rangle = \langle a_1 + b_1, a_2 + b_2, a_3 + b_3 \rangle \\ c\langle a_1, a_2, a_3 \rangle &= \langle ca_1, ca_2, ca_3 \rangle & \langle a_1, a_2, a_3 \rangle - \langle b_1, b_2, b_3 \rangle = \langle a_1 - b_1, a_2 - b_2, a_3 - b_3 \rangle \end{aligned}$$

• Algebraically, vectors behave a lot like scalars, e.g.

$$\vec{a} + \vec{b} = \vec{b} + \vec{a}$$
  $c(\vec{a} + \vec{b}) = c\vec{a} + c\vec{b}$   $(c+d)\vec{a} = c\vec{a} + d\vec{a}$ 

• See p. 802 of Stewart for a fuller list

### 6 Standard basis vectors and unit vectors

• Standard basis vectors in  $\mathbb{R}^3$ :

$$\vec{i} =$$
  $\vec{j} =$   $\vec{k} =$ 

- We can write any vector as the sum of scalar multiples of standard basis vectors:
- A unit vector is a vector with length 1
  - For example,  $\vec{i}$ ,  $\vec{j}$ ,  $\vec{k}$  are all unit vectors
- The unit vector that has the same direction as  $\vec{a}$  (assuming  $\vec{a} \neq \vec{0}$ ) is

**Example 5.** Let  $\vec{a} = 4\vec{i} - \vec{j} + 2\vec{k}$  and  $\vec{b} = \vec{i} + 2\vec{k}$ .

- a. Write  $\vec{a} 2\vec{b}$  in terms of  $\vec{i}$ ,  $\vec{j}$ ,  $\vec{k}$ .
- b. Find a unit vector in the direction of  $\vec{a} 2\vec{b}$ .

• Note: all of this applies to vectors in  $\mathbb{R}^2$  in a similar way

## 7 Problems with forces

- Some physics:
  - Force has magnitude and direction, and so it can be represented by a vector
  - Force is measured in pounds (lbs) or newtons (N)
  - If several forces are acting on an object, the **resultant force** experienced by the object is the <u>sum of these</u> <u>forces</u>

**Example 6.** A weight  $\vec{w}$  counterbalances the tensions (forces) in two wires as shown below:



The tensions  $\vec{T}_1$  and  $\vec{T}_2$  both have a magnitude of 20lb. Find the magnitude of the weight  $\vec{w}$ .

• Note: if an object has a mass of m kg, then it has a weight of mg N, where g = 9.8