Assoc. Prof. Nelson Uhan

Lesson 2. Vectors

1 Today...

- Vectors in \mathbb{R}^{2} and \mathbb{R}^{3}
- Standard basis vectors and unit vectors
- Problems with forces

2 What is a vector?

- A vector is an object that has both \square and
- Notation: a or \vec{a}
- A vector \vec{a} can be represented by an ordered list of numbers:

$$
\vec{a}=\left\langle a_{1}, a_{2}\right\rangle \quad\left(\text { in } \mathbb{R}^{2}\right) \quad \vec{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle \quad\left(\text { in } \mathbb{R}^{3}\right)
$$

- These numbers (e.g. a_{1}, a_{2}, a_{3}) are known as components of \vec{a}
- For now, let's stick to \mathbb{R}^{2}
- Much of what we'll see generalizes to \mathbb{R}^{3}
- Graphically:

- The magnitude or length of vector $\vec{a}=\left\langle a_{1}, a_{2}\right\rangle$ is
- Two vectors are equivalent if they have the same magnitude and direction - position does not matter
- A special vector - the zero vector $\overrightarrow{0}=\langle 0,0\rangle$
$\circ \overrightarrow{0}$ is the only vector with no specific direction

Example 1. Consider the vectors below.
a. Give $\vec{a}, \vec{b}, \vec{c}$ as an ordered list of numbers.
b. Find $|\vec{c}|$.
c. Are any of these vectors equivalent? Which ones?

Example 2. Consider \vec{d} below. We are given that $|\vec{d}|=5$. Give \vec{d} as an ordered list of numbers.

3 Scalar multiplication

- Let c be a scalar, \vec{a} be a vector $\Rightarrow c \vec{a}$ is another vector
- $c\left\langle a_{1}, a_{2}\right\rangle=$

Example 3. Consider $\vec{a}=\langle 2,1\rangle$ from the previous example.
a. $3 \vec{a}=$
b. $-2 \vec{a}=$
c. Draw $\vec{a}, 3 \vec{a}$ and $-2 \vec{a}$ below.

- If $c>0$, then $c \vec{a}$ is a vector in the same direction as \vec{a} and $|c|$ times the length of \vec{a}
- If $c<0$, then $c \vec{a}$ is a vector in the opposite direction as \vec{a} and $|c|$ times the length of \vec{a}
- If $c=0$, then $c \vec{a}=\overrightarrow{0}$

4 Adding and subtracting vectors

- Let \vec{a}, \vec{b} be vectors $\Rightarrow \vec{a}+\vec{b}$ is another vector
- $\left\langle a_{1}, a_{2}\right\rangle+\left\langle b_{1}, b_{2}\right\rangle=$

Example 4. Consider $\vec{a}=\langle 2,1\rangle$ and $\vec{b}=\langle 1,2\rangle$ from the previous example.
a. $\vec{a}+\vec{b}=$
b. Draw $\vec{a}+\vec{b}$ below:

- Triangle law for adding vectors:

- Parallelogram law for adding vectors:

- $\left\langle a_{1}, a_{2}\right\rangle-\left\langle b_{1}, b_{2}\right\rangle=$

5 Generalizations

- All of the above generalizes naturally to \mathbb{R}^{3} :

$$
\begin{array}{ll}
\left|\left\langle a_{1}, a_{2}, a_{3}\right\rangle\right|=\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}} & \left\langle a_{1}, a_{2}, a_{3}\right\rangle+\left\langle b_{1}, b_{2}, b_{3}\right\rangle=\left\langle a_{1}+b_{1}, a_{2}+b_{2}, a_{3}+b_{3}\right\rangle \\
c\left\langle a_{1}, a_{2}, a_{3}\right\rangle=\left\langle c a_{1}, c a_{2}, c a_{3}\right\rangle & \left\langle a_{1}, a_{2}, a_{3}\right\rangle-\left\langle b_{1}, b_{2}, b_{3}\right\rangle=\left\langle a_{1}-b_{1}, a_{2}-b_{2}, a_{3}-b_{3}\right\rangle
\end{array}
$$

- Algebraically, vectors behave a lot like scalars, e.g.

$$
\vec{a}+\vec{b}=\vec{b}+\vec{a} \quad c(\vec{a}+\vec{b})=c \vec{a}+c \vec{b} \quad(c+d) \vec{a}=c \vec{a}+d \vec{a}
$$

- See p. 802 of Stewart for a fuller list

6 Standard basis vectors and unit vectors

- Standard basis vectors in \mathbb{R}^{3} :
$\vec{i}=\square \vec{j}=\square \vec{k}=\square$
- We can write any vector as the sum of scalar multiples of standard basis vectors:
- A unit vector is a vector with length 1
- For example, $\vec{i}, \vec{j}, \vec{k}$ are all unit vectors
- The unit vector that has the same direction as \vec{a} (assuming $\vec{a} \neq \overrightarrow{0}$) is

Example 5. Let $\vec{a}=4 \vec{i}-\vec{j}+2 \vec{k}$ and $\vec{b}=\vec{i}+2 \vec{k}$.
a. Write $\vec{a}-2 \vec{b}$ in terms of $\vec{i}, \vec{j}, \vec{k}$.
b. Find a unit vector in the direction of $\vec{a}-2 \vec{b}$.

- Note: all of this applies to vectors in \mathbb{R}^{2} in a similar way

7 Problems with forces

- Some physics:
- Force has magnitude and direction, and so it can be represented by a vector
- Force is measured in pounds (lbs) or newtons (N)
- If several forces are acting on an object, the resultant force experienced by the object is the sum of these forces

Example 6. A weight \vec{w} counterbalances the tensions (forces) in two wires as shown below:

The tensions \vec{T}_{1} and \vec{T}_{2} both have a magnitude of 20lb. Find the magnitude of the weight \vec{w}.

- Note: if an object has a mass of $m \mathrm{~kg}$, then it has a weight of $m g \mathrm{~N}$, where $g=9.8$

